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E-mail: cabrera@cpd.ufmt.br

Received 16 November 2005
Published 3 May 2006
Online at stacks.iop.org/JPhysA/39/5979

Abstract
The relation of the noncommutative self-dual Chern–Simons (NCSDCS)
system to the noncommutative generalizations of Toda and of affine Toda
field theories is investigated more deeply. This paper continues the programme
initiated in (Cabrera-Carnero I 2005 J. High Energy Phys. JHEP10(2005)071),
where it was presented how it is possible to define Toda field theories through
second order differential equation systems starting from the NCSDCS system.
Here we show that using the connection of the NCSDCS to the noncommutative
chiral model, exact solutions of the Toda field theories can also be constructed
by means of the noncommutative extension of the uniton method proposed in
(Lee K-M 2004 J. High Energy Phys. JHEP08(2004)054) by Lee. Particularly
some specific solutions of the nc Liouville model are explicitly constructed.

PACS number: 11.10.Nx

1. Introduction

Inside the context of noncommutative field theories (NCFT), noncommutative (nc) extensions
of two-dimensional integrable field theories have been investigated [1–12] in the last few
years. Particularly in [12] nc extensions of Toda and affine Toda theories were proposed. The
nc extensions of Toda field theories were constructed in [12] starting from a nc zero-curvature
condition for algebra-valued potentials introduced in [5]. Expressing the gauge potentials in
a particular way this condition can be reduced to the nc Leznov–Saveliev equation, which as
shown in [12] can be regarded as the equation of motion of a constrained nc Wess–Zumino–
Novikov–Witten model (WZNW�). In this sense the extensions of Abelian and Abelian
affine Toda theories presented in [12] have the advantage of possessing an infinite number of
conserved charges and of being represented by second order differential equations for N fields.
The corresponding action principles were also presented in [12].
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On the other hand in [9] was considered the nc extension to the nc plane of the Dunne–
Jackiw–Pi–Trugenberg (DJPT) model [13] of a U(N) Chern–Simons gauge theory coupled
to a nonrelativistic complex adjoint matter field. The lowest energy solutions of this model
satisfy a nc extension of the self-dual Chern–Simons equations. Through a proposed ansatz,
nc generalizations of U(N) Toda and affine Toda theories were constructed from these nc
self-dual equations. The generalizations of Toda theories proposed were expressed as systems
of first order differential equations for 2N − 1 fields which could not be reduced to coupled
second order equations in general. The advantage of defining the Toda field theories in this
way was the possibility of constructing exact solutions since the self-dual equations for Chern–
Simons solitons on nc space can be related to the equation of the U(N) nc chiral model, which
apparently can also be solved by the Uhlenbeck’s uniton method [16] as was suggested in
[9]. In [12] was shown that the NCSDSC system can be reduced to the nc Leznov–Saveliev
equations using a different ansatz and in this way obtain the Toda field theories as second order
differential equations. In this paper we would like to present the relation between the NCSDCS
system and the nc Toda field theories in a more detailed way, essentially in connection with
the construction of exact solutions that as we will see is still possible. In this sense this paper
complements the results presented in the last section of [12].

This paper is organized as follows. In the first section we review the derivation of the nc
extensions of Abelian and Abelian affine Toda field theories presented in [12]. In section 3 we
present how the NCSDCS system can be transformed into the nc Leznov–Saveliev equations
from where the nc extensions of Toda field theories were constructed in [12]. In this section we
also show how the system of first order differential equations for 2N − 1 fields considered [9]
as the nc extension of Toda field theories can be reduced to our nc extension of Toda theories,
i.e. a system of second order differential equations for N fields. In section 4 the relation of
the NCSDCS to the nc principal chiral model [9] is reviewed. The nc extension of the uniton
method proposed in [9] and the explicit construction of some solutions of our nc extension
of Liouville model through this method is as well exposed in this section. The last section
provides the conclusions.

2. Toda theories from WZNW�

It is well known that Toda theories connected with finite simple Lie algebras, on the ordinary
commutative case, can be regarded as constrained Wess–Zumino–Novikov–Witten (WZNW)
models [17]1. By placing certain constraints on the chiral currents, the G-invariant WZNW
model reduces to the appropriate Toda theory. Specifically, the Abelian Toda theories are
connected with Abelian embeddings G0 ⊂ G. In [12] we constructed nc extensions of
Abelian and Abelian affine Toda theories applying this procedure to the nc extension of the
WZNW model (WZNW�). Here we will briefly review our results.

As usual NCFT [22] can be constructed from a given field theory by replacing the product
of fields by an associative �-product. Considering that the noncommutative parameter θµν is
a constant antisymmetric tensor, the deformed product of functions is expressed through the
Moyal product [23]:

φ1(x)φ2(x) → φ1(x) � φ2(x) = e
i
2 θµν∂

x1
µ ∂

x2
ν φ1(x1)φ2(x2)|x1=x2=x. (1)

In the following we will refer to functions of operators in the noncommutative deformation by
a � sub-index, for example e

φ
� = ∑∞

n=1
1
n!φ

n
� (the n-times star product of φ is understood).

1 Affine Toda theories can be as well regarded as constrained two-loop WZNW models [18].
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Consider now the nc generalization of the WZNW model introduced in [20]

SWZNW�
= − k

4π

∫
�

d2z Tr(g−1 � ∂g � g−1 � ∂̄g)

+
k

24π

∫
B

d3x εijk(g
−1 � ∂ig � g−1 � ∂jg � g−1 � ∂kg). (2)

Here B is a three-dimensional manifold whose boundary ∂B = �. We are considering
that z = t + x, z̄ = t − x and ∂ = 1

2

(
∂
∂t

+ ∂
∂x

)
, ∂̄ = 1

2

(
∂
∂t

− ∂
∂x

)
. The coordinates z, z̄

or equivalently x, t are noncommutative, but the extended coordinate y on the manifold B
remains commutative, i.e. [z, z̄] = θ, [y, z] = [y, z̄] = 0. The Euler–Lagrange equations of
motion corresponding to (2) are

∂̄J = ∂J̄ = 0, (3)

where J and J̄ represent the conserved chiral currents

J = g−1 � ∂g, J̄ = −∂̄g � g−1. (4)

The fields αa parameterize the group element g ∈ G through g = eαaTa
� , where Ta are the

generators of the corresponding algebra G. As it was our interest to define the theories
inside a G0 subgroup of G, the unwanted degrees of freedom that correspond to the tangent
space G/G0 were eliminated implementing constraints upon specific components of the
currents J, J̄ :

Jconstr = j + ε−, J̄ constr = j̄ + ε+, (5)

where ε± are constant elements of grade ±1 with respect to a grading operator Q, i.e.
[Q, ε±] = ±ε± defined in the algebra G and j, j̄ contain generators of grade zero and
positive, and zero and negative, respectively. The grading operator Q decomposes the algebra
G in Z-graded subspaces,

[Q,Gi] = iGi , [Gi ,Gj ] ∈ Gi+j . (6)

This means that the algebra G can be represented as the direct sum G = ⊕
i Gi and

that the subspaces G0,G>,G< are subalgebras of G, composed of the Cartan and of the
positive/negative steps generators, respectively. The algebra can then be written using the
triangular decomposition G = G<

⊕
G0

⊕
G>. Denote the subgroup elements obtained

through the �-exponentiation of the generators of the corresponding subalgebras as N =
eG<
� , B = eG0

� ,M = eG>
� . Then proposing a nc Gauss-like decomposition, an element g of the

nc group G can be expressed as

g = N � B � M. (7)

The reduced model is obtained then introducing (7) in (4) and giving the constant elements
ε± of grade ±1 responsible for constraining the currents in a general manner. As a result of
the reduction process, the degrees of freedom in M,N are eliminated and the equations of
motion of the constrained model are natural nc extensions of the Leznov–Saveliev equations
of motion [19], namely

∂̄(B−1 � ∂B) + [ε−, B−1 � ε+B]� = 0,

∂(∂̄B � B−1) − [ε+, Bε− � B−1]� = 0.
(8)

As shown in [5], the equations of motion (8) can be expressed as a generalized �-zero-curvature
condition

∂̄A − ∂Ā + [A, Ā]� = 0, (9)
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taking the potentials as A = −Bε− � B−1 and Ā = ε+ + ∂̄B � B−1. This condition (9)
implies the existence of an infinite amount of conserved charges [5]. For this reason in order
to preserve the original integrability properties of the two-dimensional models (8) can be a
reasonable starting point in order to construct nc analogues of Toda models.

Equations (8) are the Euler–Lagrange equations of motion of the action

S = SWZNW�
(B) +

k

2π

∫
d2z Tr(ε+ � Bε− � B−1). (10)

From (8) we constructed in [12] nc analogues of the GL(n, R) Abelian Toda theories
taking the gradation operator as Q = ∑n−1

i=1
2λi ·H

α2
i

, where H represents the Cartan subalgebra,

αi is the ith simple root and λi is the ith fundamental weight that satisfies 2λi ·αj

α2
i

= δij . In this

way it defines the subalgebra of grade zero as G0 = U(1)n = {I, hi, i = 1, . . . , n − 1}, where
the Cartan generators are defined in the Chevalley basis as hi = 2αi ·H

α2
i

. The zero-grade group

element B is then expressed through the �-exponentiation of the generators of the zero-grade
subalgebra G0, i.e. the SL(n) Cartan subalgebra plus the identity generator,

B = e
�n−1

i=1 ϕihi+ϕ0I
� . (11)

With the constant generators of grade ±1 as

ε± = �n−1
i=1 µiE±αi

, (12)

where E±αi
are the step generators associated with the positive/negative simple roots of the

algebra and µi are constant parameters, the equations of motion that define the nc extension
of Abelian Toda models are

∂(∂̄(eφk

� ) � e−φk

� ) = µ2
k eφk+1

� � e−φk

� − µ2
k−1 eφk

� � e−φk−1
� , (13)

a system of n-coupled equations (k = 1, . . . , n) where we have changed variables to

ϕ1 + ϕ0 = φ1,

−ϕk + ϕk+1 + ϕ0 = φk+1, for k = 1 to n − 2,

−ϕn−1 + ϕ0 = φn.

(14)

Note that for the first and last equations µ0 = µn = 0 and φ0 = φn+1 = 0. A particular
example of these field theories is the nc extension of the Liouville model:

∂(∂̄(eφ+
� ) � e−φ+

� ) = µ2 eφ−
� � e−φ+

� ,

∂(∂̄(eφ−
� ) � e−φ−

� ) = −µ2 eφ−
� � e−φ+

� ,
(15)

with φ1 = φ+ and φ2 = φ−. This system in the commutative limit will lead to a decoupled
model of two fields: a free field and the usual Liouville field, i.e.

∂∂̄ϕ0 = 0 and ∂∂̄ϕ1 = µ2 e−2ϕ1 , (16)

where ϕ1 = φ+ − φ− and ϕ0 = φ+ + φ−. The action, whose Euler–Lagrange equations of
motion lead to (13), can be obtained from (10) with (11) and (12). It reads

S(φ1, . . . , φn) =
n∑

k=1

SWZNW�
(eφk

� ) +
k

2π

∫
d2z

n−1∑
k=1

µ2
k(e

φk+1
� � e−φk

� ). (17)

In the same way the nc extensions of G̃L(n, R) 2 Abelian affine Toda theories can be
constructed taking the gradation operator as Q = ∑n−1

i=1
2λi ·H(0)

α2
i

+ nd, where d is the derivation

2 We refer to the loop algebra, see [12] for more details.
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generator whose coefficient is chosen such that this gradation ensures that the zero-grade
subspace G0 coincides with its counterpart on the corresponding Lie algebra SL(n, R), apart
from the generator d. The major difference with the finite case is in the constant generators of
grade ±1 that include extra affine generators, say

ε± =
n−1∑
i=1

µiE
(0)
±αi

+ m0E
(±1)
∓ψ , (18)

here ψ is the highest root of G = SL(n, R) and m0, µi with i = 1, . . . , n − 1 are constant
parameters. Using again the nc extension of the Leznov–Saveliev equations of motion (8) the
nc analogues of Abelian affine G̃L(n, R) Toda theories are obtained

∂(∂̄(eφk

� ) � e−φk

� ) = µ2
k eφk+1

� � e−φk

� − µ2
k−1 eφk

� � e−φk−1
� − m2

0(δn,k − δ1,k) eφ1
� � e−φn

� . (19)

Note that in the previous expression µ0 = µn = 0 and k = 1, . . . , n. The action from where
the nc G̃L(n) affine equations (19) can be derived reads

S(φ1, . . . , φn) =
n∑

k=1

SWZNW�
(eφk

� ) +
k

2π

∫
d2z

(
n−1∑
k=1

µ2
k eφk+1

� � e−φk

� + m2
0 eφ1

� � e−φn

�

)
. (20)

Among these theories it is found the nc extension of the sine-Gordon model:

∂(∂̄(eφ+
� ) � e−φ+

� ) = µ2(eφ−
� � e−φ+

� − eφ+
� � e−φ−

� ),

∂(∂̄(eφ−
� ) � e−φ−

� ) = µ2(−eφ−
� � e−φ+

� + eφ+
� � e−φ−

� ).
(21)

Let us remark that by Abelian we refer to a property of the original ordinary commutative
theory. On the noncommutative scenario it happens that the zero-grade subgroup G0 despite
it is spanned by the generators of the Cartan subalgebra, turns out to be non-Abelian, i.e., if
g1, g2 are two elements of the zero-grade subgroup G0 then g1 � g2 �= g2 � g1.

As a resume we constructed in [12] nc extensions of GL(n, R) Abelian and G̃L(n, R)

Abelian affine Toda theories as systems of second order differential equations for n fields. The
nc models differentiate from the commutative case by the presence of an extra field which
will not decouple in the equations of motion. The presence of this extra field is due to the
introduction of the identity generator in the Cartan subalgebra since the algebra SL(n) has
been extended to GL(n).

3. NC self-dual Chern–Simons system

The Chern–Simons theories in the ordinary commutative space have played a central role in
the understanding of different phenomena in planar physics. Recently they have been extended
to noncommutative spaces (see, for example, the [28, 31]), where apparently they have proven
to be also useful for the description of different phenomena, as for example, the quantum Hall
effect [30]. In this context the nc self-dual Chern–Simons system:

D̄� = 0, ∂̄A − ∂Ā + [Ā, A]� = 1

k
[�†, �]�, (22)

with D = ∂ + [A, ]� and D̄ = ∂̄ + [Ā, ]� the covariant derivatives, has been considered
in different works [27]. Particularly in [9] was considered the nc extension of the Dunne–
Jackiw–Pi–Trugenberg (DJPT) [13] (see also [14, 15]) model of a U(N) Chern–Simons gauge
theory coupled to a nonrelativistic complex bosonic matter field on the adjoint representation.
The lowest energy soliton solutions of this model satisfy (22) and they are related to the exact
solutions of the U(N) nc chiral model. Through a proposed ansatz nc generalizations of U(N)

Toda and affine Toda theories were constructed [9]. Although in the commutative case this
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procedure will lead to the well-known second order differential equations of the conformal
Toda or affine Toda theories [13], in the noncommutative scenario the generalization of Toda
theories proposed in [9] were expressed as systems of first order differential equations for
2N − 1 fields which could not be reduced to coupled second order equations in general.

In this section we would like to relate our nc extensions of the Abelian and Abelian affine
Toda models (13), (19) and the proposal presented in [9] for these Toda models. We will
see in the following that the nc Leznov–Saveliev equations (8) can be obtained from the nc
Chern–Simons self-dual soliton equations (22) expressing the gauge potentials A, Ā and the
matter field � in a particular way. This gives the possibility of obtaining nc extensions of Toda
and affine Toda models as second order differential equations. We will also see that using
the equivalence of the nc self-dual equations to the nc chiral model equation it is possible to
construct exact solutions of the nc Toda models (13).

From now on we will use the operator formalism. This language is sometimes more
convenient since the nonlocality of the star product renders explicitly calculations quite
complicated.

The complex coordinates z = t + ix and z̄ = t − ix satisfy [z, z̄] = θ . This suggests that
we can represent z, z̄ as creation and annihilation operators a = z, a† = z̄. These operators
will act on the harmonic-oscillator Fock space H with an orthonormal basis |n〉 = (a†)n√

n!
|0〉, for

n = 0, 1, 2, . . . , such that the vacuum is defined as a|0〉 = 0. Further

a|n〉 =
√

θn|n − 1〉, a†|n〉 =
√

θ(n + 1)|n + 1〉, (23)

and the number operator is defined as a†a|n〉 =: N|n〉 = θn|n〉. Any function f (t, z, z̄) on the
nc space can be related to an operator-valued function f̂ (t) ≡ F(t, a, a†) acting on H by the
use of the Weyl transform [26]. In the operator formalism any field on the nc space becomes
an operator on the Hilbert space and the derivatives as well can be represented by operators

∂ = 1

2
(∂t − i∂x) = ∂z = −1

θ
[a†, ], ∂̄ = 1

2
(∂t + i∂x) = ∂z̄ = 1

θ
[a, ]. (24)

Let us consider the self-dual Chern–Simons system in the operator formalism:

D̄�̂ = 0,

1

θ
[a, Â] +

1

θ
[a†, ˆ̄A] + [ ˆ̄A, Â] = 1

k
[�̂†, �̂].

(25)

In the following we will see how the operator version of the nc Leznov–Saveliev
equations (8) can also be obtained from (25). For this purpose let us consider that the
gauge fields are expressed as

Â = −1

θ
Ĝ−1[a†, Ĝ], ˆ̄A = −Â†, (26)

where Ĝ is an element of the complexification of the gauge group G. Suppose we can
decompose Ĝ as

Ĝ = Ĥ Û , (27)

where Ĥ is Hermitian and Û is unitary. The field strength is then expressed as

F̂+− = 1

θ
[a, Â] +

1

θ
[a†, ˆ̄A] + [ ˆ̄A, Â] = − 1

θ2
U−1H [a,H−2[a†,H 2]]H−1U (28)

and the solution of the self-duality equation D̄�̂ = 0 is trivially:

�̂ =
√

kĜ−1�̂0(a)Ĝ, (29)
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for any �̂0(a). Inserting this solution in the other self-duality equation (22) yields the equation
for Ĥ :

− 1

θ2
[a, Ĥ−2[a†, Ĥ 2]] = �̂

†
0Ĥ

−2�̂0Ĥ
2 − Ĥ−2�̂0Ĥ

2�̂
†
0. (30)

What is a second order differential equation for the fields that parameterized Ĥ 2 = B̂, i.e. the
elements of the zero-grade subgroup. Considering that �̂0 = ε+, i.e. the generator of grade
±1 which satisfies ε

†
− = ε+, the previous equation is written as

− 1

θ2
[a, B̂−1[a†, B̂]] − [ε−, B̂−1ε+B̂] = 0, (31)

which could be the operator version of the nc Leznov–Saveliev equation (8), as can be tested
using the Weyl–Moyal map [26] unless the minus sign in front of the second term. This
procedure is a nc extension of an alternative way for obtaining the Toda models from the
Chern–Simons self-dual equations presented in [13] and it allows us to define the Toda models
as second order differential equations, as we will see in the following.

3.1. NC self-dual Chern–Simons and Toda field theories

The NCSDCS system (25), as was shown in [12], can be obtained from the nc self-dual Yang–
Mills equations in four dimensions through a dimensional reduction process. In this section
we will define the Toda field theories (13) starting from this system. Hence this is another
example where the Ward Conjecture [24] apparently also works on the nc scenario. Other nc
extensions of two-dimensional integrable models have been also derived from the D = 4 nc
self-dual Yang–Mills equations [3, 10].

In [9] was proposed for U(N) the ansatz

Â = diag(Ê1, Ê2, . . . , ÊN), �̂ij = δi,j−1ĥi i = 1, . . . , N − 1, (32)

which after introducing in (25) leads to a system of coupled first order equations for the fields
Êi with i = 1, . . . , N and for the fields ĥi with i = 1, . . . , N − 1:

1

θ
[a, ĥi] − Ê

†
i ĥi + ĥi Ê

†
i+1 = 0, for i = 1, 2, . . . , N − 1,

−1

θ

[
a†, Ê

†
1

]
+

1

θ
[a, Ê1] +

[
Ê

†
1, Ê1

] = −ĥ1ĥ
†
1,

−1

θ

[
a†, Ê

†
i

]
+

1

θ
[a, Êi] +

[
Ê

†
i , Êi

] = ĥ
†
i−1ĥi−1 − ĥi ĥ

†
i , for i = 2, . . . , N − 1,

−1

θ

[
a†, Ê

†
N

]
+

1

θ
[a, ÊN ] +

[
Ê

†
N, ÊN

] = ĥ
†
N−1ĥN−1,

(33)

where we have considered k = 1. In the ordinary commutative case the corresponding
system is reduced to a system of second order differential equations for the fields ĥi with
i = 1, . . . , N − 1 only. Since the first set of equations in the above system cannot be solved
for the fields Êi with i = 1, . . . , N , the system (33) cannot be reduced to second order
differential equations. Looking at (26) we see that Â is expressed in terms of first order
derivatives

Â = −1

θ
Û−1Ĥ−1[a†, Ĥ ]Û − 1

θ
Û−1[a†, Û ]. (34)

For U(N) we can take the constant generators as ε± = ∑n−1
i=1 E±αi

. As B̂ is an element of the
zero-grade subspace it can be represented by a diagonal matrix

B̂ = diag(ĝ1, ĝ2, . . . , ĝN ). (35)
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In order to map the systems (13) and (33) we will consider that the unitary matrix U is the
identity matrix, i.e. U = I . Now it is possible to choose

�̂ = Ĥ �̂0(a)Ĥ−1, (36)

what will lead to

− 1

θ2
[a, Ĥ−2[a†, Ĥ 2]] = −�̂0Ĥ

−2�̂
†
0Ĥ

2 + Ĥ−2�̂
†
0Ĥ

2�̂0, (37)

that can be exactly transformed on the operator version of the nc Leznov–Saveliev equation
[19],

− 1

θ2
[a, B̂−1[a†, B̂]] + [ε−, B̂−1ε+B̂] = 0, (38)

considering �̂0 = ε−. Now we are in a position of mapping the models. Thus,

�̂ij = δi−1,j ĝ
1/2
i ĝ

−1/2
i−1 (39)

and the relations

ĥ
†
i = ĝ

1/2
i+1 ĝ

−1/2
i , for i = 1, . . . , N − 1,

Êi = −1

θ
ĝ

−1/2
i

[
a†, ĝ

1/2
i

]
, for i = 1, . . . , N,

(40)

are obtained. If we introduce the above relations on the system (33) it is not difficult to see
that it reduces to

− 1

θ2

[
a, ĝ−1

1 [a†, ĝ1]
] = ĝ−1

1 ĝ2,

− 1

θ2

[
a, g−1

i [a†, ĝi]
] = ĝ−1

i ĝi+1 − ĝ−1
i−1ĝi , for i = 2 · · · N − 1,

− 1

θ2

[
a, ĝ−1

N [a†, ĝN ]
] = −ĝ−1

N−1ĝN ,

(41)

which is the operator version of the Toda model (13). The first equations in (33) are trivially
satisfied since �̂ was chosen as a solution of these equations. The simplest example of the
U(N) Toda field theories is the nc Liouville model which corresponds to N = 2. In this case
we can write

B̂ =
(

ĝ+ 0
0 ĝ−

)
, (42)

and the constant generators ε± = E±α . The equations of motion from (41) or equivalently
from (31) for this model will be

1

θ2

[
a, ĝ−1

+ [a†, ĝ+]
] = −ĝ−1

+ ĝ−,
1

θ2

[
a, ĝ−1

− [a†, ĝ−]
] = ĝ−1

+ ĝ−. (43)

In the same way it is possible to consider the affine models. In [9] the affine ansatz considered
was

Â = diag(Ê1, Ê2, . . . , ÊN),

�̂ij = δi,j−1ĥi , i = 1, . . . , N − 1, except for �̂N1 = ĥN .
(44)

Here again we can established relations analogous to (40) using (34) and (36), but now
remembering that ε± = ∑n−1

i=1 E
(0)
±αi

+E
(±1)
∓ψ . The relations obtained are essentially the relations

(40), except the component (�̂†)1N = ĥ
†
N1 = ĝ

1
2
1 ĝ

− 1
2

N coming from the extra affine generator.
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4. The nc chiral model and the solutions

In the commutative scenario the equivalence of the self-dual Chern–Simons equations and the
chiral model equation is significative in the sense that all the solutions of the later have been
classified [16]. In [9] was investigated the extension of this relation to a nc spacetime. As we
will employ the uniton method for the construction of exact solutions of the Toda field theories
(41) we will present the relation among the nc chiral model and the nc self-dual Chern–Simons
system (25) in the following. Hence, let us consider the new gauge connections,

Â ≡ Â −
√

1

k
�̂, ˆ̄A ≡ ˆ̄A +

√
1

k
�̂†, (45)

which satisfy a zero-curvature condition

1

θ
[a, Â] +

1

θ
[a†, ˆ̄A] + [ ˆ̄A, Â] = 0. (46)

This means that we can write Â, ˆ̄A as pure gauge

Â = −1

θ
ĝ−1[a†, ĝ], ˆ̄A = 1

θ
ĝ−1[a, ĝ], (47)

for ĝ in some U(N). Defining χ̂ =
√

1
k
ĝ�̂ĝ−1 the nc self-dual Chern–Simons system (22)

can be converted into a single equation

1

θ
[a, χ̂ ] = [χ̂ †, χ̂ ], (48)

since

D̄� =
√

kg−1

(
1

θ
[a, χ ] − [χ †, χ ]

)
(49)

and
1

θ
[a, Â] +

1

θ
[a†, ˆ̄A] + [ ˆ̄A, Â] − 1

k
[�̂†, �̂] = g−1

(
1

θ
[a, χ ] − 1

θ
[a†, χ †] − 2[χ †, χ ]

)
g. (50)

Furthermore upon defining

χ̂ ≡ −1

θ
ĥ−1[a†, ĥ], χ̂ † ≡ 1

θ
ĥ−1[a, ĥ], (51)

for ĥ in the gauge group this equation can be converted into the nc chiral model equation

[a, ĥ−1[a†, ĥ]] + [a†, ĥ−1[a, ĥ]] = 0. (52)

In this sense given any solution ĥ of the nc chiral model, or alternatively any solution χ̂ of (48),
we could in principle obtain a solution of the nc self-dual Chern–Simons equations (25). In
the ordinary commutative case there is a well-established procedure to construct the solutions
of the chiral model equation which have finite energy called the uniton method [16]. In [9]
was conjectured the extension of this method to the nc plane and was explicitly constructed
a specific solution (the simplest) of the nc Liouville model ((33) taking N = 2). We would
like to use this method to construct exact solutions of our Toda field theories (41) and for this
reason we will briefly discuss its details. The main idea is based on one conjecture:

Conjecture. The finite energy solutions ĥ of the nc U(N) chiral model could be in principle
factorized uniquely as a product of uniton factors3, ĥ = ĥ0

∏m
i=1(2pi − 1), where (a) ĥ0 is a

3 In this section for notational simplicity we will write the coordinates as z, z̄ and the derivatives as usual, but they
should be understood as in (24). We keep the hats in order to remember that we are working with operators.
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constant, m � N − 1, (b) each pi is an Hermitian N × N projection operator (pi = p
†
i and

pi = p2
i ) (c) defining ĥj = ĥ0

∏j

i=1(2pi − 1), the following linear relations must hold:

(1 − pi)
(
∂ + 1

2 ĥ−1
i−1∂ĥi−1

)
pi = 0, (1 − pi)

(
ĥ−1

i−1∂̄ ĥi−1
)
pi = 0. (53)

This tells us that all the finite energy solutions of nc U(2) chiral model can be written as
ĥ = ĥ0(2p − 1). That a single uniton ĥ = 2p − 1, with p the Hermitian projection operator
satisfying the previous relations is a solution of the nc chiral model equation (52) is very
simple to see. Then the next step towards the construction of general solutions involves the
composition of uniton solutions. The holomorphic projection operator can be written as the
projection matrix

p = M(M†M)−1M†, (54)

where M = M(z) is a rectangular matrix that for U(N) can be chosen as N × N ′ matrix with
N ′ < N

M =
 f̂ 11(z) f̂ 12(z) · · · f̂ 1N ′(z)

· · · · · ·
f̂ N1(z) f̂ N2(z) · · · f̂ NN ′(z)

 , (55)

with f̂ ij (z) being polynomials of z. Let us remark that these projection operators are related
to soliton solutions of the CP

N−1 model [29] and in this case the elements of M must be
polynomial for consistent reasons [9].

At this point let us try to find the solutions of the Toda models (41). So one starts with
the N-dimensional vector

uT = (f̂ 1(z), f̂ 2(z), . . . , f̂ N (z)), (56)

and then defines

Mk = (û, ∂û, ∂2û, . . . , ∂k−1û), (57)

which is an N × k matrix. On the next step define the projection operators

pk = Mk

(
M

†
kMk

)−1
M

†
k . (58)

In this way,

ĥ = (2p1 − 1)(2p2 − 1) · · · (2pN−1 − 1) (59)

is a solution of the nc U(N) chiral model equation. This claim is stated as a theorem in [9]
and proven there. The main idea is based on the fact that the vectors û, ∂û, ∂2û, . . . , ∂k−1û are
considered as linear independent and from these vectors through the Gram–Schmidt process
[29] unit vectors êi are constructed:

êi = (1 − pi−1)∂
i−1û(∂̄ i−1û†(1 − pi−1)∂

i−1û)−
1
2 for i = 1, . . . , N. (60)

Since they span the same space as the vectors û, ∂û, ∂2û, . . . , ∂k−1û,

pk = M̃k

(
M̃

†
kM̃k

)−1
M̃

†
k , (61)

with M̃i = (ê1, ê2, . . . , êi ). And since the vectors êi with i = 1, . . . , k − 1 are orthonormal(
ê
†
i êj = δij

)
it is possible to find a simple expression for pi :

pi =
i∑

j=1

êj ê
†
j . (62)
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Note however that these vectors depend on both coordinates z, z̄. The unitary matrix
g = (ê1, ê2 · · · êN ) diagonalizes each pi

g−1pig =



1
1 0

. . .

1
0

. . .

0 0


, (63)

where the first i entries on the diagonal are 1 and all the others are 0. In the following we will
verify that in fact (59) satisfies the nc chiral equation. This is not difficult to see since pi is a
holomorphic projection operator, i.e. pi∂pi = ∂pi for each i = 1, . . . , N − 1,

ĥ−1∂ĥ =
N−1∑
i=1

(2pN−1 − 1) · · · (2pi+1 − 1)∂pi(2pi+1 − 1) · · · (2pN−1 − 1). (64)

By the other side from (63),

∂(ĝ−1piĝ) = 0, (65)

thus

ĝ−1(∂pi)ĝ = [ĝ−1∂ĝ, ĝ−1piĝ]. (66)

From the Gram–Schmidt procedure it is clear that ∂ei is a linear combination of e1, . . . , ei+1

and by the orthonormality of the basis e
†
i ∂ej = 0 for all i > j +1. Similarly since ∂

(
e
†
i ej

) = 0,

e
†
i ∂ej = −(

e
†
j ∂̄ei

)† = 0 for all j > i, because ∂̄ei is a linear combination of e1, . . . , ei . In
this way the matrix ĝ−1∂ĝ has the simple form:

ĝ−1∂ĝ =



ê
†
1∂ê1 0

ê
†
2∂ê1 ê

†
2∂ê2

ê
†
i ∂êi−1 ê

†
i ∂êi

. . .
. . .

0 ê
†
N∂êN−1 ê

†
N∂êN


. (67)

This means that g−1∂piĝ will have only one element different from zero:

(g−1∂piĝ)lm = ê
†
i+1∂êiδl,i+1δm,i . (68)

It follows that ĝ−1[∂pi, pj ]ĝ = 0 for i < j and with this result

ĥ−1∂ĥ = 2
N−1∑
i=1

∂pi and ĥ−1∂̄ ĥ = −2
N−1∑
i=1

∂̄pi, (69)

since ĥ is unitary and each pi is Hermitian. Showing in this way that the chiral equation is
satisfied. Then as χ̂ = ĝ�̂ĝ−1 and from (67), (68), (45) the Toda solution takes the form

�̂ij = ĥ
†
i δi+1,j = [ĝ−1χ̂ ĝ]ij = −1

θ
δi+1,j e

†
i+1[a†, ei], i = 1, . . . , N − 1,

Âij = Êiδi,j =
(

�̂ − 1

θ
ĝ−1[a†, ĝ]

)
δi,j = −1

θ
ê
†
i [a

†, êi]δi,j , i = 1, . . . , N.

(70)
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If we compare this expression with (40) we can see that

ĝ
− 1

2
i a†ĝ

1
2
i = ê

†
i a

†êi , i = 1, . . . , N

ĝ
1
2
i+1ĝ

− 1
2

i = −1

θ
ê
†
i+1[a†, êi], i = 1, . . . , N − 1.

(71)

This algorithm allows us to construct exact solutions of the nc Toda field theories (41). In the
next section we will see how it explicitly works constructing some simple solutions of the nc
Liouville model (43).

4.1. NC Liouville exact solutions

First solution. Using the method explained in the previous section, in the work [9] was
calculated the simplest exact solution to the nc Liouville model ((33) with N = 2). Here we
will go one step forward and obtain one solution of (43). Considering the vector uT = (z c),
with c being a complex constant, the projection operator p = ê1ê

†
1 reads,

p =
(

a 1
N+|c|2 a

† a 1
N+|c|2 c̄

c 1
N+|c|2 a

† |c|2 1
N+|c|2

)
. (72)

After computing the orthonormal vector e2, the unitary matrix ĝ = (ê1 ê2) is expressed as4

ĝ =

a
√

1
N+|c|2

√
|c|2

N+θ+c|2

c
√

1
N+|c|2 −a† 1

c̄

√
|c|2

N+θ+|c|2

 . (73)

Thus

�̂ = ĝ†∂pĝ =
 0 0√

|c|2√
N+θ+|c|2

√
N+|c|2 0

 . (74)

Using that af (N) = f (N + θ)a, the gauge potentials Â, ˆ̄A are expressed as

Â = −1

θ

a†
(

1 −
√

N+|c|2√
N+θ+|c|2

)
0

0 a†
(

1 −
√

N+2θ+|c|2√
N+θ+|c|2

)
 . (75)

Taking into account (36) the simplest solution in terms of Ê1, Ê2, ĥ1 can be obtained from
(70)

Ê1 = ĝ
− 1

2
+

[
a†, ĝ

1
2
+

] = a†

(
1 −

√
N + |c|2√

N + θ + |c|2

)
,

Ê2 = ĝ
− 1

2−
[
a†, ĝ

1
2−
] = a†

(
1 −

√
N + 2 + |c|2√
N + θ + |c|2

)
,

h
†
1 = ĝ

1
2−ĝ

− 1
2

+ =
√

|c|2√
N + θ + |c|2

√
N + |c|2

.

(76)

From the above first two equations it is obtained an exact solution of our nc Liouville (43)

ĝ
1
2
+ = α(

√
N + |c|2), ĝ

1
2− = β

(
1√

N + θ + |c|2

)
, (77)

4 Unitary in the sense that gg† = 1.
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where α, β are two constants such that α−1β =
√

|c|2. The third condition in (76) fixes the
relation among these constants. We can choose α = 1 and β =

√
|c|2 and the solution is then

written as

ĝ− = |c|2
N + θ + |c|2 , ĝ+ = N + |c|2. (78)

In order to study the commutative limit of this solution we apply the Weyl transform [26] that
leads to

g− = |c|2
z � z̄ + |c|2 , g+ = z̄ � z + |c|2, (79)

or equivalent to

g− = |c|2
z̄z + θ + |c|2 , g+ = z̄z − θ + |c|2. (80)

Considering a perturbative expansion in θ ,

g− = |c|2
z̄z + |c|2

(
1 − θ

z̄z + |c|2
)

+ O(θ2),

g−1
+ = 1

z̄z + |c|2
(

1 +
θ

z̄z + |c|2
)

+ O(θ2),

(81)

it is not difficult to check that in fact up to first order in θ this is a solution of the nc Liouville
model [12] with g+ = eφ+

� and g− = eφ−
� and with ϕ1 = 1

2 (φ+ − φ−) and ϕ0 = 1
2 (φ+ + φ−).

This solution in the commutative limit θ → 0 reduces to the well-known Liouville solution:

ϕ1 = ln

(
z̄z + |c|2

|c|
)

. (82)

Second solution. As a second example let us now try to find the next simplest solution
following the nc extension of the uniton method of [9] outlined in the previous section. For
this purpose we will consider uT = (z2 c), from where it is computed the unit vector

e1 =
(

a2

c

) √
1

N(N − θ) + |c|2 , (83)

and the projection operator

p =
(

a2 1
N(N−θ)+|c|2 a

†2
a2 1

N(N−θ)+|c|2 c̄

c 1
N(N−θ)+|c|2 a

†2 |c|2 1
N(N−θ)+|c|2

)
. (84)

On the next step we compute the orthonormal vector e2 using the expression (60) and it reads

e2 =
(

a

− c
|c|2 a

†
N

)√
1

N

√
|c|2

(N + θ)N + |c|2 . (85)

By means of the expressions (71) it is computed another solution of the nc Liouville model,

g
− 1

2
+ a†g

1
2
+ = e

†
1a

†e1 = a†

√
N(N − θ) + |c|2
(N + θ)N + |c|2 ,

g
− 1

2− a†g
1
2− = e

†
2a

†e2 = a†

√
N

(N + θ)

√
(N + 2θ)(N + θ) + |c|2

(N + θ)N + |c|2 .

(86)
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From where we get that

g
1
2
+ = α

√
N(N − θ) + |c|2, g

1
2− = β

√
N

(N + θ)N + |c|2 . (87)

The constants are related through the condition

h
†
1 = −1

θ
e
†
2[a†, e1] = g

1
2−g

− 1
2

+ =
√

N

(N + θ)N + |c|2

√
4|c|2

N(N − θ) + |c|2 , (88)

from where we obtain that

α−1β = 2
√

|c|2. (89)

Choosing α = 1 and β = 2
√

|c|2, one solution is then

g− = 4|c|2N
(N + θ)N + |c|2 , g+ = N(N − θ) + |c|2, (90)

that in the commutative limit leads to

ϕ1 = ln

(
(z̄z)2 + |c|2

2|c|√z̄z

)
, (91)

another known Liouville solution.

Third solution. A more general solution that includes the above solutions as particular examples
could be computed using the uniton method. Take now the vector as uT = (zmc). The matrix
projector p in this case is expressed as

p =
(

am 1
Nm+|c|2 a

†m

am 1
Nm+|c|2 c̄

c 1
Nm+|c|2 a

†m |c|2 1
Nm+|c|2

)
, (92)

where Nm = N(N − θ) · · · (N − mθ + θ). The matrix g is equal to

g =

am
√

1
Nm+|c|2 am−1

√
|c|2

(N+θ)m+|c|2
1√
Nm−1

c
√

1
Nm+|c|2 −a† 1

c̄

√
|c|2Nm−1

(N+θ)m+|c|2

 , (93)

where Nm−1 = N(N − θ) · · · (N − (m − 2)θ) and (N + 1)m = (N + θ)N(N − θ) · · ·
(N − (m − 2)θ). Taking into account (71) it is obtained

g
− 1

2
+ a†g

1
2
+ = e

†
1a

†e1 = a†

√
Nm + |c|2

(N + θ)m + |c|2 ,

g
− 1

2− a†g
1
2− = e

†
2a

†e2 = a†

√
Nm−1

(N + θ)m−1

√
(N + 2θ)m + |c|2
(N + θ)m + |c|2 ,

(94)

from where we get that

g
1
2
+ = α

√
Nm + |c|2, g

1
2− = β

√
Nm−1

(N + θ)m + |c|2 . (95)

Once again the constants are related through the condition

h
†
1 = −1

θ
e
†
2[a†, e1] = g

1
2−g

− 1
2

+ =
√

Nm−1

(N + θ)m + |c|2

√
m2|c|2

Nm + |c|2 , (96)
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from where we get that

α−1β = m
√

|c|2. (97)

Choosing α = 1 and β = m
√

|c|2, the solution is then

g− = m2|c|2Nm−1

(N + θ)m + |c|2 , g+ = Nm + |c|2. (98)

This solution in the commutative limit reduces to another classical Liouville solution:

ϕ1 = ln

(
(z̄z)m + |c|2

m|c|
√

(z̄z)m−1

)
. (99)

In this section we have seen how although the nc extension of the uniton method is still not
proven [9], it can be used to compute exact solutions of the nc Toda models (41). Particularly
we have constructed exact solutions of the nc Liouville model (43) and these solutions reduce
in the commutative limit to known solutions of the ordinary Liouville model, what in a certain
sense gives validity to the method. The construction of exact solutions of other Toda models
(N > 3) is straightforward, although with much more complicated calculations involved.

5. Conclusions

In this paper we have studied in a more detailed way the relation between the nc self-dual
Chern–Simons system and the nc Leznov–Saveliev equations. We have seen how from the
NCSDCS system it is possible to define the Toda field theories as systems of second order
differential equations and still it is possible to construct exact solutions using the nc extension
of the uniton method proposed in [9]. The solutions explicitly constructed for the nc Liouville
model lead to known solutions in the commutative limit, what in a certain way validate
the method. Since the NCSDCS system can be obtained from the nc self-dual Yang–Mills
equations in four dimensions through a dimensional reduction process [12], the nc Toda field
theories could possible have a physical picture inside D-branes systems. Finally we could say
that although the complete integrability properties of these theories remain to be investigated,
the nc Toda field theories constructed in [12] possess in fact some integrable-like properties:
an infinite number of conserved charges,5 exact solutions, and they are reductions of the nc
self-dual Yang–Mills equations in four dimensions that in [25] were shown to be classically
integrable.
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